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Abstract—Edge computing is a distributed computing
paradigm that moves data-intensive applications and services
(e.g., AI) closer to the data source. The rapid growth of edge
endpoints connected to the Internet today poses several challenges
in scalable application life cycle management. That is, managing
data and workloads on several thousand, up to millions of
edge endpoints, challenged by limited connectivity, resource
constraints, network and edge endpoint failures. In this work,
we present EdgeRDV, a new edge abstraction that builds on
the idea of rendezvous nodes to manage edge workloads at
scale. The EdgeRDV architecture is comprised of a central cloud
management endpoint (or cloud hub), a central gateway for each
edge site (or edge hub), redundant gateways (or rendezvous
nodes), and edge endpoints. Beyond its scalable architecture,
EdgeRDV presents new techniques and algorithms that address
single points of failures and provide adjustable levels of resilience
and cost-effectiveness in edge network deployments. We con-
ducted preliminary experiments to evaluate EdgeRDV, through
simulations, and our results show that EdgeRDV requires one to
three orders of magnitude fewer intermediate nodes compared
to relay structures, can gracefully adapt to failures, and requires
a constant number of messages during failure recovery in edge
sites with up to 667K+ edge endpoints.

Index Terms—edge computing, scalability, rendezvous, binary
trees, IoT.

I. INTRODUCTION

Edge computing is a distributed computing paradigm that

moves compute and storage away from centralized points.

In fact, edge computing distributes applications, data, and

services geographically closer to the edge endpoints that

consume these services. The roots of edge computing reach

back to the 1980’s when Prodigy [1], [2], [3], an early online

service, implemented content caching near the edge to provide

better and faster service for users. Content delivery networks

(CDNs) [4], [5] such as Akamai extended this concept to the

Internet to accelerate web performance and delivery of con-

tents. Edge computing generalizes and extends these concepts.

The rapid growth in the number of edge endpoints (e.g.,

computers, mobile devices, smart appliances, kubernetes (k8s)

clusters, and other Internet of Things (IoT) devices.) connected

to the edge of the Internet today has increased significantly

due to advances in AI, computing, and storage. Such rapid

growth has also accelerated the amount of data generated

Work done when first author was an intern at the IBM T. J. Watson Research
Center.

at the edge, for example: studies show that around 10%

of enterprise-generated data is created outside a traditional

centralized data center or cloud, and this figure will reach

75% by 2025 [6]. Additionally, the data generated from IoT-

connected edge endpoints is estimated to grow to 73.1 ZB by

2025 [7]. As the volume and velocity of data increases at the

edges, so too does the number of applications deployed at the

edge and the need to address some of the shortcomings of

cloud computing. For instance, it is expensive and inefficient

to transfer data generated at the edge to a cloud or data

center for processing. It is also expensive and inefficient to

transfer data back to the edge from the cloud or data center.

Moving data through and across boundaries in a network

topology (ingress, egress) consumes capacity and adds latency

to the transmission process. Furthermore, data processed in the

cloud lacks local contextual information, such as precise user

location, local network conditions, or information about users’

mobility behavior [8].
To address these challenges, advances in edge computing

are focused on collecting, processing, and enabling insightful

decisions, for a variety of industry use cases (e.g., manufac-

turing, remote exploration, smart homes, supply chains), at or

near where data is collected. When data is processed and ana-

lyzed at/near its collection point at the edge, communications

between the edge and the cloud is reduced to such things

as delivery of application and configurations, reporting, and

data summaries. Hence, data can be processed in a fast and

timely manner, while reducing network consumption, to meet

the requirements of modern applications (e.g., fast response

time, data privacy/sovereignty and security1, etc.).
To manage the life-cycle (e.g., deploy, update, and retire)

of edge applications and to bring value to the large amount

of data generated at the edge today, many edge applications

are deployed in a hub and spoke model (e.g., IBM MVI [9],

Open Horizon [10], etc.). The hub is the central control plane

for management of edge workloads deployed in a number of

spoke locations. A spoke is where data is generated or locally

aggregated for processing. A telecommunications access point,

an assembly line, or a retail branch are good examples of

places where spokes are deployed and operated. Deploying

1Analyzing data where it originates limits the risk of a security breach.
Edge computing also introduces other security challenges but its discussion
is out of the scope of this paper
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and operating an application at the edge raises several chal-

lenges, including scalable application life cycle management.

Additional challenges are due, among other things, to limited

connectivity, network and edge endpoint failures, constrained

compute and storage resources. In particular, how can we

deploy and manage applications deployed in edge endpoints

across various locations, using a single control point or ‘single

pane of glass’? Further, how can we ensure timely application

status updates in the face of limited network bandwidth,

planned disconnections, and connection failures at the edge?

How can we handle the scale, diversity, and density of edge

endpoints in so many edge sites2? Managing at scale is

the key issue at the edge as the number of edge endpoints

located across a multitude of sites can reach several thousand

(e.g., quick service restaurant: McDonald’s drive-thru order

processing [11] and k8s edge clusters at Chick-fil-A [12]) up to

a 100K+ (e.g., number of vehicles in a software defined vehicle

network and total number of appliances, devices, and sensors

in smart factory across several sites in industry 4.0 [13], [14]).

To address this gap, several frameworks [15], [16], [17], [10]

have been proposed to mitigate some of the limitations as-

sociated with edge application lifecycle management. How-

ever, these methods have scalability limitations, some are

susceptible to single points of failure and/or require significant

bandwidth for edge application management. CDNs can be

used to deploy edge applications at scale but CDNs alone are

not optimal to minimize data transfer and network bandwidth

between cloud and edge as well as minimizing the response

time for application deployment. Furthermore, using CDNs

alone introduces other challenges, for example: how do we
efficiently propagate application status from edge to cloud?
(more discussion in Sect. IV).

To address these gaps, we present a new edge abstraction

that builds on the idea of rendezvous nodes. We demonstrate

that our approach (1) can be optimized to accommodate

different levels of fault tolerance and costs, (2) avoids single

points of failures through rendezvous node replication, and (3)

requires one to three orders of magnitude fewer intermediate

nodes and up to 11% fewer messages as compared with relay

structures, in networks of up to 667K+ edge endpoints.

The contributions of this paper are as follows:

• We propose EdgeRDV, a scalable architecture for edge

workload management comprised of a cloud-based man-

agement endpoint (cloud hub), a central controller for

each site (edge hub), redundant gateways for each edge

endpoint (rendezvous nodes), and edge endpoints.

• We conduct preliminary experiments to evaluate

EdgeRDV’s scale and resilience in edge sites up to

667K+ edge endpoints, and we show that our framework

can be optimized for cost and resilience.

• We discuss how techniques in EdgeRDV are broadly ap-

plicable to distributed edge settings, including scalable in-

frastructure bootstrapping, adjustable network resilience,

and efficient resource usage.

2A physical location with several edges nodes such as a manufacturing site

The remainder of the paper is organized as follows. Sec-

tion II discusses our framework and methodology. Section III

presents our experiments and discusses our experimental re-

sults. Section IV discusses the implications of our work.

Section V discusses related works. We conclude and discuss

future work in Section VI.

II. METHODOLOGY

In this section, we present our framework, capable of man-

aging workloads across thousands of edge sites and serving up

to a 100K+ edge endpoints. We achieve this by minimizing

bandwidth and avoiding single points of failure. Figure 1

shows the architecture of our framework. It comprises of

a cloud hub, an edge hub for each edge site, redundant

rendezvous nodes and edge endpoints3. Next, we describe

each of these architectural elements and their interactions in

more detail. We conclude this section by providing a detailed

discussion on the rendezvous node’s selection algorithm and

on the network bootstrapping process.

A. Architecture

1) Cloud Hub: the cloud hub serves as a central control and

management plane for multiple edge sites. It provides a global

view of the edge infrastructure. It is where site operators or

admins configure or push manifests, expressing desired state,

that include a list of objects that must be deployed to edge

endpoints at a target edge site. The cloud hub also collects ag-

gregated status from the objects running at all edge endpoints.

Hence, the cloud hub can effectively manage objects/states

of edge endpoints spread across hundreds/thousands of edge

sites by communicating with edge hub computing resources

deployed at every site.

2) Edge Hub: it is the control point for each edge site,

serving thousands of edge endpoints. The edge hub receives

metadata from the cloud hub to pull and cache appropriate

objects (e.g., AI model) from object stores. Importantly, the

caching reduces the overhead for the cloud hub because

edge endpoints at the lower layers of the architecture do not

communicate directly with it. While the edge hub provides

scalable operations at each edge site, it also represents a single

point of failure in case of network outages. We addressed

this limitation using redundant rendezvous nodes, which are

described next.

3) Rendezvous Nodes: (or RDV nodes for short), represent

a replicated buffer zone between the edge hub and edge end-

point. RDV nodes pull and cache objects from the edge hub.

Further, RDV nodes aggregate status for all edge endpoints

under their management. RDV nodes provide three benefits.

First, they reduce the communication overhead at the edge

endpoints by limiting edge endpoint-to-edge hub messages

during the network bootstrapping phase (see II-B3). Second,

they preserve valuable edge hub bandwidth by avoiding re-

layed requests for each edge endpoint to the cloud hub and/or

object store. Third, RDV node redundancy overcomes the

3Recall that, in this paper, we use the term “edge endpoint” to refer to an
edge computing node such as an edge cluster or edge devices such as cameras
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Fig. 1. The EdgeRDV architecture: comprised of a cloud-based management endpoint (cloud hub), a central controller for each edge site
(edge hub), redundant gateways (rendezvous nodes), and edge endpoints - illustrating how a workload (an AI model as a use-case) is deployed
from the cloud to edge endpoints

single point of failure within an edge site (i.e., the edge hub).

To further improve resilience, we will investigate the trade-

offs of selecting a RDV node to become an edge hub via a

leader election algorithm in future work.
4) Edge Endpoints: The edge endpoints receive metadata

with updates from RDV nodes, apply the updates, and con-

tinuously report their state. Edge endpoints only report the

aggregate status of all the objects or workloads under their

management, therefore minimizing the state transported to the

cloud. Note that, in our framework, edge endpoints and RDV

nodes are located in the same network, and their communica-

tion modality represents one implementation of peer-to-peer

communication. In some scenarios an edge endpoint can also

function as a RDV node.

B. RDV Selection and Network Bootstrapping

As discussed above, the introduction of RDV nodes im-

proves the scale and resilience of our architecture. Edge

endpoints in an edge site only communicate with RDV nodes

to pull objects and report status. RDVs are assigned to nodes

during the network bootstrap process. However, as the number

of edge endpoints associated with an edge site increases, we

want to minimize the overhead of each RDV node and keep

the assignment of RDV nodes to edge endpoints balanced.

To minimize overhead we need to address the following

challenges: a) placement of RDV nodes in a network (II-B1);

b) selection and recommendation of RDV nodes for each

edge site (II-B2) and c) tractable and fault-tolerant assignment

of edge endpoints to RDV nodes (II-B3). In the following

discussion, we present our design and solutions to overcome

these challenges:

To assign RDV nodes to edge endpoints, we constructed

a virtual id (or VID) space using a Kademlia-like [18],

[19] virtual binary tree during the network bootstrapping

phase (similar to the approach in [20]). In this tree, the

edge endpoints are represented by the leaf nodes and all the

intermediary nodes are logical nodes and candidates for RDV

node selection (different from the approach in [20]). In this

virtual tree, the VID of a node is the L-bit long binary string

along the path from the root to the corresponding node (see

Fig. 2). Like in [20], L denotes the number of bits used to

represent the VID space. Hence, the logical distance between

a pair of nodes in the VID space is L minus the length of

the longest common prefix for the pair. For example, suppose

node A with VID = 00000 and Node B with VID = 10000.

Then the logical distance(γ) between nodes A and B is 5 (L=5;

γ = 5-0 = 5).

This VID space can also be used to embed the physical

connectivity or proximity between edge endpoints [20]: if two

edge endpoints are close in the VID space, then they are also

close in the physical topology. To build the VID space we

use the top-down and centralized algorithm proposed in [20].

This algorithm is suitable when the initial edge site or network
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topology is known a priori. Next, we describe our methodology

to select RDV nodes, how we assign these nodes to edge

endpoints, and our network bootstrapping process.

1) RDV Node Placement: Recall RDV nodes are responsi-

ble for the delivery of objects and metadata to edge endpoints.

Hence, the right placement of RDV nodes is a prerequisite to

answer availability and fault tolerance questions in an edge

site. We considered two approaches (see Fig. 2) to find the

optimal minimum latency placement of RDV nodes at scale.

Let M denote the depth4 of VID space (i.e., edge endpoints

are leaf nodes located at depth M as discussed above). Let N
denote a depth in the VID space, where 1 <= N < M , and

S is the set of 2N bit strings that can be assigned to RDV

nodes. The first approach operates as follows. Suppose there

are at most D available nodes that can be assigned as RDV

nodes, where D < 2N . The first (or minimalist) approach

assigns the RDV nodes VIDs by using a constant X , where

X = (2N )
D , to choose eligible VIDs in S starting from index 0.

We call X an additive index. For example, in Figure 2, N = 3,

D = 3. Therefore, the additive index is 2 (i.e.,2
3

3 ), the indices

are (0, 2, 4), and the corresponding VIDs are illustrated in the

figure. Note that the minimalist approach prioritizes the cost5

of bootstrapping an edge network by mapping edge endpoints
constraints into the VID space.

In contrast, the second (or optimist) approach assigns RDV

node VIDs by choosing an arbitrary depth N where all VIDs in

S are eligible for assignment. For example, in Figure 2, N = 2.

Therefore, the network must have 4 (i.e., 22) RDV nodes. Note

that the optimist approach prioritizes resilience by mapping
as many VIDs from the VID space as possible, assuming no
edge endpoint constraints. By resilience, we mean keeping a

balanced load among all RDV nodes in case of a single RDV

failure.

To explore these two approaches, we conducted a theoret-

ical edge-endpoint-to-RDV-node assignments and RDV node

failure simulations. Specifically, by placing various quantities

of RDV nodes at different binary tree depths and reassigning

edge endpoints in a scenario where their primary RDV node

fails. Figure 3 demonstrates that, regardless of the tree depth,

the minimal approach skews the RDV-node-to-edge endpoint

redistribution (i.e., lower resilience) in case of a single RDV

node failure, in exchange for lower cost. On the other hand,

the optimist approach maintains network balance (i.e., higher

resilience) during redistribution while allowing a variable tree

depth to be chosen for the initial RDV node VID assignments

(i.e., variable cost). In other words, the optimist approach

maintains both cost and resilience flexibility. Therefore, the

RDV placement method used throughout this work relies on

the optimist approach.

2) RDV Node Selection and Recommendation: To support

100K+ edge endpoints, the number of RDV nodes must

scale gracefully with the number of edge endpoints while

maintaining desirable levels of resilience. To achieve that,

4The number of levels in the virtual binary tree
5Here we measure cost by number of RDV nodes required for an edge site

Distance Ranking RDV
3 1 00 ∗ ∗∗
4 2 01 ∗ ∗∗
5 3 10 ∗ ∗∗
5 4 11 ∗ ∗∗

TABLE I
EDGE ENDPOINT RDV RANKING TABLE - OPTIMIST APPROACH FOR RDV

VID ASSIGNMENT

we developed an RDV node recommendation algorithm that

takes into consideration cost and resilience trade-offs: given

an edge site’s desired number of associated edge endpoints

and a resilience level (expressed as a percentage of total edge

endpoints coverage per RDV node), algorithm 1 outputs the

following: 1) binary tree depth; 2) number of RDV nodes, and

3) RDV node level placement in the tree. Using this algorithm,

an edge site administrator can adjust the initial number of RDV

nodes to match a desired level of resilience and cost given an

edge network site.

Algorithm 1 RDV Recommendation Algorithm

def estimate rdv(total endpts, desired covg pct):

subtree endpts = total endpts / 2

max depth = get tree depth(total endpts)

starting depth = 1

rec node lvl = rec estimate rdv(subtree endpts, to-

tal endpts, starting depth, max depth, desired covg pct)

return max depth, pow(2, rec node lvl), rec node lvl

def rec estimate rdv(subtree endpts, total endpts, depth,

max depth, desired covg pct):

if depth == max depth then
return depth - 1

end if

coverage percent = (subtree endpts/total endpts) * 100

if coverage percent < desired covg pct then
return depth

end if

subtree endpts = subtree endpts / 2

depth += 1

return rec estimate rdv(subtree endpts, total endpts,

depth, max depth, desired covg pct)

3) Network Bootstrapping: We use a centralized approach

for edge endpoint ID-VID mapping and assume that all edge

endpoints in an edge site are on the same network. Then,

during network bootstrapping we map edge endpoint IDs to

VIDs of leaf nodes in our binary tree (recall that only the

leaf nodes in the tree represent edge endpoints). Thus, the

VID of an edge endpoint is the L-bit long binary string along

the path from the root to the corresponding leaf node. This

ID-to-IP mapping represents a routing layer that enables edge

endpoints’ communication with RDV nodes.
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Fig. 2. The minimalist and optimist approaches to RDV node placement in the vid space - the white nodes (vertices) and white boxes
represent the unused vid’s

Fig. 3. Simulation results for minimalist (left) and optimist (right) RDV node placement approaches

Algorithm 2 Binary Tree Depth Recommendation Algorithm

def get tree depth(total endpts):

tree depth = 1

current depth endpts = pow(2, tree depth)

while current depth endpts <= total endpts do
if current depth endpts == total endpts then

break

end if

tree depth += 1

current depth endpts = pow(2, tree depth)

end while
return tree depth

The network bootstrapping process is as follows: edge

endpoints contact the edge hub to get their assigned VIDs

and the list of (pre-assigned) VIDs of RDV nodes. Next,

edge endpoints compute logical distances (γ) to each RDV

node [19], [21] and build an RDV ranking table (see Table I).

Then, the edge point locates its ranking table and selects the

“closest” RDV node to register for receiving updates, pulling

objects, and reporting status. In this scheme, the edge hub

maintains the list of VIDs for all reachable RDV nodes in the

network.

The above network bootstrapping process has the following

two advantages: a) the edge hub only needs to maintain the

ID/VID mapping for all assigned VIDs; b) the edge hub

offloads the RDV node ranking computation to the edge end-

points. Hence, the network bootstrapping can easily scale to

thousands of edge endpoints with minimal overhead attributed

to the edge hub.
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Fig. 4. Proxy representations of tree flavors

III. ANALYSIS/EVALUATION

We have conducted several experiments to evaluate our pro-

posed framework. More specifically, as illustrated in Figure 4,

we compare our EdgeRDV method (i.e., log2 based tree) to

other relay-based methods (i.e., log10, log20 and log100 trees).

In this section, we describe three sets of experiments. In the

first experiment, we compared the number of intermediate

nodes for two tree flavors, and our methodology with various

RDV node coverage. In the second experiment, we analyze

failure adaptation by analyzing the number of messages re-

quired to update all edge endpoints during failure events. In the

third experiment, we analyze the number of messages required

to pull the latest configurations in a worst-case scenario (i.e.,

all edge endpoints previously lost the path to the cloud).

A. Experimental Setup

We have developed our customized, in-house simulator for

EdgeRDV to enable an extensive edge endpoint simulation on

large network topologies. We implemented the aforementioned

architecture elements of EdgeRDV as RESTful modules.

These modules can be readily deployed as containers on

a variety of physical devices or virtual machines. In our

experiments, we evaluate EdgeRDV by running its compo-

nents as container processes on the same host (Docker Linux

containers using the Ubuntu 20.04 base image). Note that we

analyzed scale up to 667,712 edge endpoints. For the RDV

node placement/selection/recommendation (II-B) analysis, un-

less otherwise noted, we used an RDV node coverage of 10%.

By coverage we mean the number of edge endpoints that an

RDV node can support.

B. Minimizing Intermediate Nodes

In tree-based edge endpoint deployments, the intermediate

nodes form the middle layer responsible for transporting state

and workloads to/from root nodes to leaf nodes (edge end-

points) – see Fig. 4. The larger is the number of intermediate

nodes the higher is the number of single points of failure

and the deployment cost for the edge site infrastructure.

Therefore, minimizing the number of intermediate nodes is

crucial to minimizing cost and increasing scale for the edge

infrastructure.

In this experiment, we compared the number of intermediate

nodes for three tree flavors and our method with various RDV

node coverage (i.e., 10% and 20%). We used random sampling

to select buckets for edges sites, from 5,000 up to 1,000,000

edge endpoints per site. Figure 5 shows that, depending on the

chosen RDV node coverage, the RDV-based approach requires

one to three orders of magnitude fewer intermediate nodes.

Note that our method can adjust the number of intermediate

nodes (aka RDV nodes) depending on the desired coverage

per edge site. Therefore, our method provides a parameter to

optimize the trade-off between maximizing the coverage per

RDV node and increasing the resilience of the infrastructure

associated with higher cost.
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Fig. 5. A comparative analysis of intermediate nodes by tree type
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C. Adapting to Failures

Relay methods such as Azure IoT propagate messages to

edge endpoints in a relay fashion [22]. In this experiment, we

analyzed failure adaptation through the number of messages

required to update all edge endpoints of failure events (i.e.,

loss of connectivity at top layer nodes) in an RDV-based tree

(i.e., RDV detection) and a log10 tree (i.e., relay detection).

Figure 6 shows that, compared to a relay method, the RDV

method scales gracefully with the number of edge endpoints.

Specifically, the RDV method requires up to 11% fewer
messages depending on the number of edge endpoints. The

reduction in messages is related to the need for no more

than two hops for failure notifications to get propagated

to edge endpoints instead of n-hops6 found in other relay

methods such as Azure IoT. Furthermore, a failure signal at

the root node in a relay structure could be delayed if any of

the intermediate nodes, responsible for managing some edge

endpoints, have also failed. In contrast, edge endpoints in an

RDV-based network can rely on back-up RDV nodes (i.e., the

next highest ranked RDV node) in the case that their primary

RDV node fails.

�������	����	��
�	�����	��	��	
����	�
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Fig. 6. Relay and RDV failure detection message costs

D. Configuration Updates

Loss of connectivity implies edge endpoints do not receive

timely updates from the cloud hub. Thus, after failure recovery,

edge endpoints must send messages to receive and apply the

latest configurations. Depending on the tree structure, this

failure recovery phase may challenge the available bandwidth

within a given edge site if all edge endpoints and intermediate

nodes access the cloud gateway (edge hub) at the same time. In

this experiment, we analyze the number of messages required

to pull the latest configurations in a worst-case scenario

whereby all edge endpoints previously lost their path to the

cloud. In particular, we conducted an experiment comparing

the per edge endpoint messages in an RDV-based tree (i.e.,

6n corresponds to the number of levels in the tree

RDV pull) and a log10 tree (i.e., relay pull). Figure 7 shows

that the RDV method scales constantly with an increasing

number of edge endpoints. This is because it takes no more

than two hops for an edge endpoint to request and receive

the latest configuration update(s). In contrast, the number of

update messages grows linearly with the number of layers in

a relay structure. Further, as a corollary, each intermediate

layer in a relay structure introduces an increasingly larger

flash crowd problem during configuration updates whereby

numerous edge endpoints access an intermediate node at the

same time.

��������	��	
���	��	��	����	����

�
��

�
��

�	
��
��

��
�

�	���
���	���������

Fig. 7. Relay and RDV failure recovery message costs

IV. DISCUSSION/IMPLICATIONS

Edge computing is intended to reduce network bandwidth

consumption by processing and acting on data as close

to its source as possible. Furthermore, it is imperative to

manage edge workloads despite node and network failures.

Our methodology demonstrates techniques of achieving these

goals across thousands of sites representing millions of edge

endpoints – state of the art methods only support thousands to

tens of thousands of edge endpoints [23], [24]. In this section,

we discuss the implications of this work on distributed edge

systems.

The architecture presented here is intended to scale to thou-

sands of edge sites, representing millions of edge endpoints,

by implementing efficient techniques across each edge site.

Figure 8 shows how we can horizontally scale our framework

to support one million edge endpoints deployed across several

edge sites with minimal overhead to the cloud management

plane (cloud hub). This is due to the number of connections

to the cloud hub only growing linearly with the number of

edge sites; independently of the number of edge endpoints per

edge site. Additionally, each site only downloads and caches

application manifests that are relevant to capability-specific

edge endpoints.

The practical challenges addressed by our methodology

(Section II-B) further cement the rendezvous method as a

general approach for exploring cost and resilience trade-offs
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Site 2Site 1 Site 1000

deploy spec

get status

deploy

Cloud Hub

...
Site N

...

deploy deploy deploy

Fig. 8. Horizontal scaling EdgeRDV across N edge sites to support one million plus edge endpoints with minimal overhead to the cloud hub

in network deployments. In particular, we showcase how the

rendezvous method is applicable for edge contexts where

the network structure is known a priori. Unlike other tree

structures, the binary tree presents properties that are easier

to represent and exploit. This includes network slicing at each

level to increase/decrease the resilience level by exactly 50%.

The core design principles that this work adheres to are:

increasing scalability, reducing bandwidth consumption, and

eliminating single points of failure. Our analysis indicates that

the proposed techniques result in requiring significantly fewer

intermediate nodes and dramatically reducing failure detec-

tion/recovery messages (Section III). In particular, these results

showcase how our techniques would scale at different points

in the application life cycle management workflow. That is,

initial infrastructure bootstrapping (by providing appropriate

resilience and cost adjustments), graceful failure detection (by

providing multiple detection paths), and low latency failure

recovery (by reducing intermediate layers). Further, the use of

logical distances implies an inversely proportional relationship

between edge endpoints and their assigned RDV nodes. This

means that the higher the logical distance between an edge

endpoint and an RDV node, the less impact a single RDV

node’s failure will have. A similar result is observed in [25].

Admittedly, this notion relies on latency between nodes, within

an edge site, remaining negligible (i.e., not reflected in the

logical distances). Note that a similar notion is difficult to

replicate in other relay structures such as Azure IoT [15].

Robustness is often defined as the ability of a network

to continue to function when it is subjected to failures. Our

proposed architecture is resilient to failure. In the scenario of

cloud hub failure, the edge hub will continue to deliver the

latest objects or metadata it received to edge endpoints via the

RDV nodes. In the case of failure of the edge hub, the RDV

nodes will continue to deliver objects and metadata to edge

endpoints. Lastly, the failure of a single RDV node does not

create any overhead, as edge endpoints can easily switch to

other replicas of the RDV nodes. Therefore, our architecture

provides multi-layer resilience to failure.

Furthermore, our proposed solution provides some advan-

tages over using CDN to deliver application workloads to con-

strained edge endpoints: a) minimize data transfer: in edge

computing, edge applications need to report status back to the

central hub to provide a global view of the edge infrastructure.

In our approach, RDV nodes collect and aggregate the status

from the edge endpoints, hence, minimize the amount of data

transferred over the network when compared with CDN –

where every edge endpoint would need to report a status back

directly to the cloud hub; b) fast response time: our approach

provides faster response time when compared to CDN - as

the edge endpoints pull objects or metadata from RDV nodes

located in the same network rather than from CDN edge

servers several hops away, or in other networks; c) network
bandwidth minimization: in our approach only a single edge

hub receives metadata from the cloud hub independent of

the number of edge endpoints associated with an edge site.

In contrast, with CDN, every edge endpoint will need to

pull content from the closest CDN edge server which may

overload the edge server as the number of edge endpoints

increase. Furthermore, the network bandwidth consumption

will be directly proportional to the number of edge endpoints

in an edge site. However, our solution can also be deployed

in conjunction with a CDN infrastructure to further improve

resilience; for example, a CDN can be used as the transport

layer between the cloud hub and the edge hub.

V. RELATED WORKS

A. Managing Edge Operations in Resource-Constrained En-
vironments

The challenge of managing data/workloads on resource-

constrained edge endpoints has been explored across different

contexts (e.g., community cellular networks [27], wildlife

tracking [28], drone image analytics [29]). We describe lessons

drawn from these other contexts to inform our methodology.

The authors in [27] tackled the challenge of scalably managing
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Platform Module Management Cloud Comms Protocols Device-to-device Comms?

Azure IoT Edge [15] IoT Agent IoT Hub MQTT, AMQP No
Google IoT Core [17] IoT Core IoT Core MQTT, HTTP No
AWS IoT Core [16] IoT Core IoT Core MQTT, HTTPS, LORAWAN Yes
IBM EAM [26] Edge Agent Edge Service REST API No

TABLE II
CAPABILITY COMPARISON FOR INDUSTRIAL IOT PLATFORMS FROM MAJOR CLOUD PROVIDERS

independent cellular networks. Community cellular networks

(CCNs) are intended to be deployed for the people and run by

the people. That is, they offer phone services and applications

across multiple sites while still tapping into the resources such

as phone numbers from incumbent Mobile Network Opera-

tors (MNOS). The key approach in [27] involved operating

multiple CCNs under a single Community Cellular Manager

(CCM) controller, which in turn is managed by MNOs for

other aspects such as secure bootstrapping and resource usage

reports. Like CCM, we aim to operate each edge site as a

single entity that can deploy specific workloads and scale up

depending on the number of supported nodes (i.e., RDV nodes,

edge endpoints). Still, each edge site would be plugged into a

central control plane (i.e., edge hub and cloud hubs) spanning

multiple edge sites.

Another challenge in edge contexts is operating millions of

edge endpoints, at scale, with resource and network bandwidth

limitations. ZebraNet [28] is a classical example that involves

tracking wildlife migration patterns using battery-powered col-

lar tags on Zebras. One of the technical challenges addressed

in ZebraNet involves communication and data collection from

sporadically reachable and resource-constrained nodes. The

ZebraNet architecture relied on peer-to-peer data swaps to

retrieve data from unreachable nodes. That is, faced with

limited storage and network bandwidth, nodes prioritize con-

nections and data from more recently connected peers through

dynamic ranking during data swap phases. In this context, we

leverage a similar approach by ranking RDV nodes in terms

of logical distance from a given edge endpoint. This stands in

contrast to the “flood protocol” in ZebraNet where nodes waste

network resources by broadcasting or flooding data packets to

all nearby nodes.

B. Industrial IoT Management Platforms

Industrial IoT platforms are developed by major cloud

providers [15]–[17], [26]. The platforms are widely deployed

to support diverse use cases including transportation [17],

smart homes [16], manufacturing [15], [26], etc. While the

targeted use cases are different, they share the architectural

goal of deploying and managing workloads on edge endpoints

(Table II). Workload manifests (or metadata) are routinely de-

ployed to specific edge endpoints or groups of edge endpoints

based on labels or tags. We leverage a similar approach where

manifests can be sent to specific edge sites from the cloud

hub. We further extend this approach to each edge site. In other

words, edge hubs and RDV nodes may only download relevant

objects/workloads to reduce load on constrained storage and

CPU resources.

Each industrial IoT deployment typically accesses cloud

resources through a gateway or “top layer” node [22]. Thus,

“lower layer” edge endpoints rely on the gateway for out-

bound requests to the cloud. In most implementations, the

edge endpoints’ logical connections are pooled into a single

physical connection at the cloud-connected top layer node.

This reduces the bandwidth overhead on top layer nodes and

the cloud management endpoints. In our approach, a single

physical connection is established by each site’s edge hub

to the cloud hub to reduce load on the latter. Note that, for

existing platforms, the connection pooling is both a benefit

and a forcing function of the chosen upstream protocols such

as MQTT or AMQP [17], [30]. In contrast, we implement the

architectural elements using HTTP because the edge endpoints

do not communicate directly with the edge hub.

Industrial IoT workloads are deployed as “modules” or

“models” on the edge endpoints [15], [26]. Among the ma-

jor platforms, Azure IoT enables edge-endpoint-to-module

and module-to-module communication, which enables discon-

nected operations for situations when cloud connectivity is

temporarily lost [30]. Note that the platforms rarely enable

edge-endpoint-to-edge-endpoint communication, which could

reduce the number of edge endpoint requests to the cloud

through the top layer node. Granted, AWS IoT is capable

of edge-endpoint-to-edge-endpoint communication through a

publish/subscribe (pub/sub) interface [31]. The pub/sub is

brokered through its IoT Core (i.e., top layer) node. This

approach faces two limitations. First, the pub/sub interface

becomes a bottleneck as the number of edge endpoints grows.

Secondly, although it serves as an important channel for edge-

endpoint-to-edge-endpoint messages, the broker represents a

single point of failure during disconnected operations. In con-

trast, our approach optionally distinguishes the capacities of

edge endpoints and RDV nodes, which enables edge-endpoint-

to-edge-endpoint communication with built-in redundancy to

the top layer node.

As described above, industrial IoT networks operate with

‘top layer’ (or ‘parent’) and ‘lower layer’ (or ‘child’) edge

endpoints [32], in line with the ANSI/ISA-95 standard [33].

This alludes to tree-like network structures. However, a layered

tree structure, with necessary intermediate “parent” nodes,

may not scale efficiently because the number of intermediate

nodes grows linearly with the number of edge endpoints. In

fact, Azure IoT recommends not scaling a network beyond five

levels and no more than 100 edge endpoints per IoT node [23].
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In contrast, we present an architecture whose number of

intermediate nodes grows by a logarithmic factor with the

number of edge endpoints to be supported. In fact, the number

of intermediate nodes can be adjusted to a desired level of

resilience for an arbitrary number of edge endpoints.

C. Content Delivery Networks (CDNs)

CDNs are the result of significant efforts in exploring

content delivery at scale [4], [5]. CDN advances and opti-

mizations are motivated by major challenges inherent to the

Internet’s original design and evolution such as inefficient rout-

ing protocols, requirements for increased scale, and unreliable

networks. [5]. The overarching goal of CDNs is to reduce

the number and latency of round-trip times (RTTs) between

content origin servers and “edge” servers. We draw many

lessons from decades of CDN experience in our architecture.

The original Akamai CDN aimed to solve the flash crowd

problem, “in which request load overwhelms some aspect of

the site’s infrastructure, such as the front-end web server, net-

work equipment, or allocated bandwidth” [4, p. 50]. Akamai

devised a system to serve content from a variable number

of servers closer to the network edge. We draw an analogy

whereby thousands of edge endpoints simultaneously access

cloud resources with requests. State-of-the-art IoT platforms

have resolved this issue by bundling ‘logical’ edge endpoint

connections into a single physical cloud connection [30].

However, as a network scales to millions of edge endpoints

across thousands of edge sites, this multiplexing effect still

embodies the flash crowd problem and a single point of

failure, especially in edge sites with a single cloud gateway.

Like CDNs, we avoid network overload by redirecting edge

endpoint requests to redundant, and potentially more powerful,

nodes (the equivalent of CDN edge servers). Going beyond the

CDN approach, within each edge site, we present a layered

architecture with a parameter to control the desired level of

resilience to spikes and failures through multiple, ranked RDV

nodes representing each edge endpoint.

CDN edge servers evolved from challenges related to host-

ing content to offering computation for running workloads

closer to the end user [5]. Like CDNs, our goal is to reli-

ably deliver state/workloads from model stores to potentially

thousands of sites/servers. Additionally, we assume a level of

control over the edge endpoints and networks where the work-

loads run. Here, we provide even more granular redundancy

and lower latency at each site through RDV node replication.

Similar to CDNs, our proposed methodology reduces the

number of RTTs between the end users (i.e., edge endpoints)

and origin servers (i.e., model stores) through effective, multi-

level caching at the edge hubs and RDV nodes.

Another important component of CDNs is the mapping

system that associates user requests to the closest live edge

server [5]. The mapping system relies on a detailed view

of the CDN network - enabled by granular monitoring of

RTTs between CDN overlay networks, edge servers, and the

broader Internet. In other words, the edge servers provide an

important view into their loads, download times, and other

metrics. Thus, the mapping system operates a fail-over system

in case the closest edge server to a user is no longer available.

Note that a mapping system requires a significant amount

of network traffic for sustainable operations. In contrast to a

mapping system, we move the fail-over mechanism to the edge

endpoints. Specifically, the edge endpoints are individually

tasked with ranking backup RDV nodes in case their primary

RDV node fails.

VI. CONCLUSION

Edge computing is intended to reduce network latency

by bringing applications as close to their data source(s) as

possible - away from centralized cloud data centers. Man-

aging application lifecycles across thousands of edge sites,

supporting hundreds of thousands to millions of edge end-

points, poses many challenges –including disconnected op-

erations, edge endpoint failures, etc. Existing hub-and-spoke

frameworks attempt to address these shortcomings. However,

these frameworks have scalability limitations and are still

subject to single points of failure and significant network

bandwidth consumption. To bridge this gap, we presented an

alternative framework, EdgeRDV, that builds on the idea of

RDV nodes. EdgeRDV is a scalable architecture comprised

of a cloud-based management endpoint (cloud hub), a central

controller for each edge site (edge hub), redundant gateways

(RDV nodes), and edge endpoints. Our EdgeRDV method-

ology presents novel techniques and algorithms to optimize

infrastructure costs and resilience settings.

Through simulations, we conducted preliminary experi-

ments to evaluate EdgeRDV’s scale and resilience in edges

sites up to a 667K+ edge endpoints. Our experiments demon-

strate that EdgeRDV requires one to three orders of magnitude

fewer intermediate nodes, can adapt to failures with up to 11%

fewer network messages compared to relay structures, and

avoids the flash crowd problem in application configuration

updates during failure recovery. We discuss how the techniques

employed by EdgeRDV are broadly applicable to distributed

edge settings, including scalable infrastructure bootstrapping,

adjustable network resilience, and efficient resource usage. As

a future work, we plan to implement EdgeRDV in hardware

and showcase its benefits in terms of scalability, network

bandwidth, data transfer, and RTT optimization.
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